Infinite Impulse Response Filters
Design
(UNIT-3)



“Ideal” FIR filters

= In general. an ideal (continuous) frequency response is related to an
(1nfinite) impulse response by the Fourier Series

H,(e!?) = > hy (n)e™/"®

H=—20

hy(n) = %J—i H,;(e!)e!"de

= The coefficients of an “ideal” FIR {filter can therefore be found from the
Fourier Series coefficients of the desired frequency response.

= Not practical because
« the impulse response cannot be infinite
« the impulse response must be causal

« maybe don’t need the frequency response to be specified for all (continuous)
values of @



Frequency Sampling

= ftruncation of the impulse response mtroduces errors
* truncation of the impulse response 1s equavalent to sampling of the frequency
TESPOISE
the truncated impulse response can be obtamed directly from the DFT of
the desired frequency response
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N n=>0
h(n)= — 3 H(k)e' > n=012....N—1
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= N-1 1s the order of the FIE. filter

The frequency response has been sampled at NV points around the umt
circle

* The frequency response of filter designed 1n thas way will only be exactly
correct only at these points
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» For the ideal filter (from Fourier Series)

1 exf2 sin(maf2)
hg(n)=—1| / ﬁejﬁmdm = %{—f M=—00,... 00
22 < nxf2
= For the truncated filter (from IDFT)
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Windowing

The truncation of the impulse response 1s equivalent to
multiplication of the ideal (infinite) impulse response by a
square window w(n)

(h.(n), 0=n<N-1
F?(n}=]| 5’{

otherwise

= hy(n)w(n)

=  Square window function

- 1. 0<n<N-1
win) =4 _
: 0. otherwise



¢ Eftfect of multiplying impulse response by window

» convolution of 1deal frequency response with Fourier transform of
window

= Fourier transform of square window 1s sinc

Magniude Response dB

expect to see high side-lobes and ripples 1n the frequency response of the filter

dezigned using square window
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Other window functions

» Hamnung window

(nm)
L _Jos4+046co§ —|, -Isns<I
win) = T

0, otherwise
»  Hanning window
" ™
nT l

I
win) =1 I/
| 0, otherwise

—I=n=1l

¢
05+ 05cos,
b

= (Several others)

s Use of raised cosine-type windows (Hammung or Hanning) gives better
stopband attenuation but wider transition band



Filter magnitude responses for square. Hamming and
Hanning windows

Magnituge Response dB

Momalized Freguency
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n i
[
20 10y fll
= TAAVA) ¥
" ||| 'I|'ﬁ".I I.-"_L-II II,-"L,II -H.'II aWa I_,-
] i i I
” B ANARNEN
1 e [ .r“ﬂ.li ™, ,ﬁﬁllﬁl N
&0 I Iﬁl". % ¥ | T il
| ’ Ut~ 0 UV
100 Hanning [ ] | ] i
-120
0 0.1 0.2 0.3 0.4 0.5

Hamming




