Infinite Impulse Response Filters Design (UNIT-3)

"Ideal" FIR filters

 In general, an ideal (continuous) frequency response is related to an (infinite) impulse response by the Fourier Series

$$\begin{split} H_d(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} h_d(n) e^{-jn\omega} \\ h_d(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{jn\omega} d\omega \end{split}$$

- The coefficients of an "ideal" FIR filter can therefore be found from the Fourier Series coefficients of the desired frequency response.
- Not practical because
 - the impulse response cannot be infinite
 - · the impulse response must be causal
 - maybe don't need the frequency response to be specified for all (continuous) values of ω

Frequency Sampling

- truncation of the impulse response introduces errors
 - truncation of the impulse response is equivalent to sampling of the frequency response
- the truncated impulse response can be obtained directly from the DFT of the desired frequency response

$$\begin{split} H(k) &= H_d\left(e^{j\omega}\right)\bigg|_{\omega = \frac{2\pi}{N}k} = \sum_{n=0}^{N-1} h(n)e^{-j\frac{2\pi}{N}nk} & k = 0,1,2,...,N-1 \\ h(n) &= \frac{1}{N}\sum_{k=0}^{N-1} H(k)e^{j\frac{2\pi}{N}nk} & n = 0,1,2,...,N-1 \end{split}$$

- N-1 is the order of the FIR filter
- The frequency response has been sampled at N points around the unit circle
 - The frequency response of filter designed in this way will only be exactly correct only at these points

Example

Lowpass filter

Number of taps: 33

$$|H(e^{j\omega})| = \begin{cases} 1, & |\omega| < \pi/2 \\ 0, & \text{otherwise} \end{cases}$$

For the ideal filter (from Fourier Series)

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{jn\omega} d\omega = \frac{1}{2} \frac{\sin(n\pi/2)}{n\pi/2} \qquad n = -\infty,...,\infty$$

For the truncated filter (from IDFT)

$$h(n) = \frac{1}{33} \sum_{k=0}^{32} H(k) e^{j\frac{2\pi}{N}nk}, n = 0,1,2,...,32$$

Windowing

The truncation of the impulse response is equivalent to multiplication of the ideal (infinite) impulse response by a square window w(n)

$$h(n) = \begin{cases} h_d(n), & 0 \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$$
$$= h_d(n)w(n)$$

Square window function

$$w(n) = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$$

Effect of multiplying impulse response by window

- convolution of ideal frequency response with Fourier transform of window
- Fourier transform of square window is sinc
 - expect to see high side-lobes and ripples in the frequency response of the filter designed using square window

Other window functions

Hamming window

$$w(n) = \begin{cases} 0.54 + 0.46\cos\left(\frac{n\pi}{I}\right), & -I \le n \le I\\ 0, & \text{otherwise} \end{cases}$$

Hanning window

$$w(n) = \begin{cases} 0.5 + 0.5\cos\left(\frac{n\pi}{I}\right), & -I \le n \le I\\ 0, & \text{otherwise} \end{cases}$$

- (Several others)
- Use of raised cosine-type windows (Hamming or Hanning) gives better stopband attenuation but wider transition band

Filter magnitude responses for square, Hamming and Hanning windows

